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Abstract

Safety assessment of new air traffic management systems is a main issue for civil

aviation authorities. Standard techniques such as testing and siInulation have serious

limitations in new systems that are significantly more autonomous than the older ones.

In this paper, we present an innovative approach, based on formal verification, for

establishing tile correctness of conflict detection systems. Fundamental to our approach

is the concept of trajectory, which is a continuous path in the x-y plane constrained

by physical laws and operational requirements. From the model of trajectories, we

extract, and formally prove, high level properties that can serve as a framework to

analyze conflict scenarios. We use the AILS alerting algorithm as a case study of our

approach.
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1 Introduction

In the current aerospace system, commercial flights are controlled by Air Traffic Control

(ATC) from gate-to-gate. Before a flight can take place, the complete route i)lan must be sent

to the ATC authorities in charge of the geographical sectors crossed by the air(:raft. During

the flight, even ininor changes to the plan require a clearance from ATC 1)efore they can be

performed. New distributed air-ground traffic management concepts [1] are being developed

to address the inefficiencies of the current system. For example, the free-flight concept allows

direct flight routes without ATC intervention[16], and the Airborne Information for Lateral

Spacing (AILS) concept allows simultaneous and independent landing on closely spaced

runways [17].

A key aspect of these new concepts is that they shift responsibility for aircraft separation

from air traffic controllers to pilots and automation. This change is theoretically possible

because recent technology such as D-GPS (Differential Global Position System) aim ADS-B

(Automatic Dependent Surveillance Broadcast) can provide very accurate data-flight infor-

mation to pilots and on board computers. Computer systems can warn pilots when other

aircraft are dangerously intruding into their own airspace. Despite the technology advances,

a major concern of civil aviation authorities is that this approach may compromise the overall

system safety.

In this paper, we address the issue of safety assessment for conflict detection systems.

In the avionics community, testing and simulations are the standard methods for ('ertit_,ing

safety of digital systems. The AILS project, for instance, has conducted extensive simu-

lation and testing of the alerting algorithm. So far, no major flaws in its logic have been

(tetected. However, neither testing nor simulation can give a definitive answer to questions

such as: "What is the lookahead time for an alarm prior to a conflict?" or "Does the.re exist

a trajectory leading to an undetected conflict?" These questions can only be solved by using

mathematical analysis. Given the nature of the problem l, we also believe that such anal-

ysis should l)e mechanically checked via a theorem proving system, such as PVS, or other

automate(t proving techniques, e.g., model-checking.

In general, avionics systems, such as AILS, are hybrid systems. That is, they consist

of simultaneous discrete and continuous behavior. The continuous behavior arises from the

kinematics of the aircraft. The discrete behavior is an inherent aspect of any embedded

digital system. Several approaches have been used in the literature to model hybrid systems

(see [18]). Most of these approaches use extensions of finite state automata theory to handle

state variables ranging over real numbers. Properties are then formalized as a reachabil-

ity problem and proven by using model-checking and theorem proving techniques. These

techniques have been shown to be effective for handling systems where control logic modes

t As the appendix reveals, the analysis required to establish the safety properties involves a complex mix-
ture of long dedu('tions, algebraic manipulations, calculations of formulas with specific values, and inequality
reasoning. Performing this analysis by hand is tedious and error prone. For example, some of the prooN
required case splits that on the surface looked symmetrical, but were later found to be slightly different
during mechanical checking.
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trigger continuous and dynamic changesof tile state. For instance,the TCAS alerting sys-
tem for preventing midair collision wasmodeledusinga hybrid automata approach [14]. In
other collision alerting systems,suchas AILS, the discreteaspectsdo not arisefrom control
variables but from the discretization of temporal and spatial domains. For instance, the
AILS algorithm checkseveryhalf a secondwhether future aircraft locations (calculated by
projection of the current locations) violates a distancethresholdin a givenlookaheadtime.

IIl our approach,insteadof relying on state automatamodels,we construct a continuous

model of aircraft trajectories, where we can prove properties using standard calculus and

mathematics. Then, we verify the correctness of the algorithln with respect to this continuous

model. In this paper, and for readability, we have used standard mathematics and traditional

logic reasoning. Nevertheless, our development has been formally checked in tim general

verification system PVS [15]. All the theories and proofs are available through the URL

http://shemesh, larc. nasa. gov/fm/ftp/aLls/.

The remainder of this paper is organized as follows. In Section 2, we develop a mathe-

matical framework for the analysis of conflict scenarios. This framework is formalized and

verified in Section 3. In Section 4, we use our mathematical model to study the correctness of

the AILS alerting algorithm. The last section summarizes our work and contains concluding

remarks. As an appendices, we include the technical lemmas referenced in the paper, a table

of translations for the conventions used in the paper into the equivalent PVS language, and

the AILS alerting algorithm in PVS.

2 Conflict Avoidance Framework

Conflict detection algorithms are designed to predict conflict situations between the own

aircraft and another aircraft within some lookahead time T in the future, i.e., T :> 0. In

our framework, two aircraft have a (potential) conflict at time T, if there exists a trajectory

leading to a distance between the aircraft less than a given value ConflictRange at time T.

The value of ConflLctRange largely depends on the concept that is being implemented. For

a landing concept such as AILS, the Conf].ictB.ange is in the order of feet, but for a general

mid-air conflict detection algorithm it could be in the order of nautical miles.

Predictions of aircraft trajectories are made to determine if a conflict exists in a given

lookahead time. Two types of information can be used for prediction: (1) intent information

for medium to long lookahead times; and (2) state information for short to medium lookahead

times. Intent information refers to information in flight plans, destination, in route way

points, etc. State information uses the airplane heading, speed and location to predict

future aircraft states. In this paper, we are only concerned with trajectory prediction based

on state information.

Assuming that aircraft have reliable access to accurate data flight information, two key

properties that must be established for a conflict detection algorithm art, (1) any predicted

conflict within time T issues an alarm at time (), and (2) an alarm at time 0 reflects a

potential conflict at time T. The first propert.v is called eorrectn_ss and the latter one is

certainty. Notice that certainty means that the alerting system does not issue false alarms.



Since possible conflict that are not alerted may lead to future collisions, correctness is a inuch

more critical feature, from a safety point of view, than certainty. However, false alarms will

have a negative effect in the overall performance of tile airspace system [12].

Given the hybrid nature of the conflict detection systems, formal verification of correct-

ness and certainty is a complex task, highly dependent on the particular subtleties of each

algorithin. In this section, we develop a general framework to study that kind of systems.

It consists of(l) a nominal model of trajectories, (2) intruder and evader aircraft trajectory

assumptions, (3) convergence and divergence trajectory criteria, and (4) a set of general con-

ditions for conflict avoidance. This framework, which is formalized and verified in Section 3,

is used in Section 4 for studying the correctness and certainty prot)erties of the AILS alerting

algorithm.

2.1 Aircraft Trajectories

At the basis of our verification approach is the concept of aircraft trajectory. In [13], Kuchar

and Yang present a survey on conflict detection and resolution modeling methods. In that

survey, three kinds of trajectory models are characterized: nominal, woT;st-case, and prob-

abilistic. In the nominal approach, the future aircraft state, i.e., position, speed, heading,

bank angle, is projected from the current state according to physics laws. In the worst-case

apl)roach, the future state is projected by following a t)olicy of extreme values for specific

state variables. In a probabilistic model, uncertainties such as weather conditions or extrap-

olati()n errors are taken into account to calculate the most probable aircraft trajectories. For

the case of paralM landing, an algorithm based on a probabilistic model was proposed in [6].

In general, nominal models are more conservative than probabilistic and worst-case ones.

However. they also generate a greater number of false alarms. In contrast, probabilistic

models produce a lower number of false alarms [11, 6], but they may disregard some rare

conflicting situations. To formally answer a question such as "Does there exist a conflict

without an alarm being issued?", we need a model that includes the set of all po.s,sible tra-

jectories fi'om given aircraft initial states. This is precisely the information provided by our
nominal model.

In our model, a trajectory is defined to be a continuous path in the x-y plane subject

to constraints imposed by the aircraft dynamics. 2 Formally, the kinematics of an aircraft

moving at constant ground speed v' in a two-dimensional plane is given by the equations

:r'(t) = vcos(O(t)) (1)

y'(t) = ,;sin(0(t)) (2)

O'(t) = (g/v) tan(¢(t)) (3)

where x, y, 0, O are differentiable functions mapping time to location coordinates, heading,

and bank angle, respectively. Equations 1 and 2 state that the derivative of the position

functions gives the velocity vector of the aircraft. Equation 3 relates the bank angle with

2The vertical separation is typically handled separately. This will be studied in future work.



the heading of the aircraft. That equation states that the rate of direction changeof an
aircraft is proportional to the tangent of tile bank angleby a factor of g/v, where g is the

gravitational force. We assume a minimal ground speed of 210 feet per second.

In addition to the above physical constraints, we imt)ose a maximum bank angle opera,

tional constraint for commercial aircraft to be 35 °, i.e.,

IO(t)l _< 357r/180. (4)

Hence.forth, we use the constant MaxBank = 357r/180.

From the equations defining the motion of the aircraft, we can deduce minimum and

maximum distances traveled by an aircraft in a given time. In particular, vt is the farthest

distance, i.e., via straight line, that can be reached by an aircraft moving at constant speed

v in t seconds. That property is called YCNGFTYS, which stands for You Cannot Go Faster

Than Your Speed, and can be stated as follows

Theorem 1 (YCNGFTYS).

o _<t v/(x(t)- x(o)F + .v(o)) _

Tile above theorem has been formally proven in PVS. The proof, however, is much more

complex than the intuition behind it, which is illustrated in Figure 1.

Figure 1: You Cannot Go Faster Than Your Speed

According to Figure 2, for an aircraft moving at constant speed v and with a constant

bank angle 4', the distance from the position at time 0 to tile position at time t is given by

the formula

rn(v, O, t) = 2r(tT, O) siil(l,t/2r(?,, 6)) (5)

where r(v, O) is the turn radius of the aircraft.

5



Figure 2: Distance Traveledin Curved Trajectory

Tile turn radius r(v, 0) can be calculated as follows.

t,t/'r(O, v) = (.q/,,)tan(0)t (From Equation 3)

v/r(v,O) = [q/v)tan(O) (Simpli_'ingt).

Thus,

'r(v,¢) = v2/(9tan(o)). (6)

According to Formula 4, the nlaxinmm change of heading per second of' an aircraft moving

at constant speed v is given by

p(,,,)= (g/.,,)tan(M  Bank). (7)

From Equation 6 and Equation 7:

r('/LMaxBank) ---- ,,/p(,') (s)

and from Equation 5 and Equation 8:

m(v, MaxBank, t) = 2r(v, MaxBank) sin(p('t_)t/2). (9)

When 0 _< p(v)t <_ 2, we have formally proven in PVS that m(_', MaxBank, t) is the minimum

distance traveled bv an aircraft moving at constant speed v in t seconds :_. The property is

called YCNGSTYS, which stands for You Cannot Go Slower Than Your Speed

3We conjecture that the property still holds for 0 _<p(v)t <_27c; but, we could not find a formal proof of
this proposition.
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Theorem 2 (YCNGSTYS).

0 < p(v)t < 2 D m(v, MaxBank, t) _< V/(X(t) - x(0)) 2 + (y(t) - y(0)) 2.

According to theorems YCNGFTYS (Theorem 1) and YCNGSTYS (Theorem 2), for an aircraft

moving at constant ground speed v, the inner circle of radius re(v, MaxBank, t) and the outer

circle of radius vt, both centered at the current position of the aircraft, delimit the area that

could be reached by the aircraft at time t. See Figure 3.

Figure 3: Reachable Area of an Aircraft at Time t

2.2 Intruder and Evader Aircraft

We consider an airspace sector with only two aircraft. We also assume that one of the

aircraft, called evader, follows an straight path at its current heading, i.e., the bank angle

of the evader is considered to be always 0. The other aircraft is called intruder and no

particular assumptions are made for its trajectory. Without lost of generality, we take a

coordinate system where the x-axis coincides with the evader trajectory. In that case, the

heading angle of the evader aircraft is always 0.

Multiple-aircraft scenarios can be modeled as sequential composition of l)air-wised aircraft

conflict detection algorithms. Notice however, that when solving conflicts in a nmltiple-

aircraft system, solutions to a pair of aircraft could create new conflicts in previously solved

aircraft. Although, conflict resolution algorithms are out of the scope of this report, w(, would

like to mention at least three kinds of techniques tbr conflict resolution that are relevant to
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<)ur model of trajectories (see for example, [2, 4, 5, 10]): geometric optimization, modified

pot_mtial-fidd, and predefined escape _tta_te'wt_e_. The first one tries to minimize the vel()city

vector change required for each conflict for solving the conflict. The modified potential-field

approach exploits an analogy between air traffic and repulsion-attraction features of charged

particles in a potential field. Predefined escape maneuvers are used in specific flight situations

where stronger assumptions on aircraft trajectories can be made. Landing is one of these

situations. Indeed, the AILS concept uses a pre<lefined escape maneuver which instructs the

pilot of the evader aircraft to climb and turn away 45 ° from the intru<ler aircraft when a

traffic warning alarm issued.

Henceforth, state functions representing the state of the evader aircraft are subscripted

with a lowercase e; similarly, intruder state functions are subscripted with a lowercase i. We

use 0t as an abbreviation for Oi(t). Applying the above restrictions on the evader trajectory

to e(luations 1, 2, and 3, we get

.r_(t) = X,. + vet (10)

,_(t) = _; (11)

O_(t) = () (12)

d).(t) = 0 (13)

where X,, and ); are the coordinates of the initial evader position.

The evader represents an aircraft flying on normal conditions while the intruder represents

a blundering aircraft. Constraints on the evader trajectory are justifiable since even under

free-flight rules, aircraft normally fly on straight lines. In the particular case of the AILS

(:oncept, and for safety reasons, the alerting algorithm runs twice on each airplane. In the first

execution, the algorithm treats the local aircraft as the evader an the foreign aircraft as the

intruder. In the se(,ond execution, the roles of intruder and evader aircraft are interchanged.

2.3 Convergence and Divergence of Trajectories

Fundamental to a conflict detection algorithm is the ability to determine whether the trajec-

tories of two aircraft are diverging or converging and to find the point of closest separation

of the projected trajectories. This amounts to finding the minimum of the distance between

two straight lines. If the evader aircraft is assumed to have heading 0 and the intruder

aircraft has heading 0, then the equations defining the projected trajectories are

_.;(t) = _¥(0) + v_t

y*(t) = y_(O)

x;(t) = :,-_(0)+ v#cos(0)

.q_(t) = yi(O)+ vitsin(O)



and the distance between tile projected trajectories at tinm t, R(t), can be computed as
follows:

,&(t) = _,;(t) -z:(t)
a_(t) = y;(t) - ,_:,(0

n(t) = V/_x(t)2+ :x.(t)2 (14)

To find the minimum of R(t), first the derivative of R(t) is computed:

R'(t) =
!%(t)v + G(t)a.

R(t)

where

= 'v_cos(0) - v_

" ' sin(0)'.._y 7--- V i

When R_(t + r) = 0, we get the time T, relative to t, of the point of closest separation

between the aircraft. The solution to this equation is:

r_,_ = - A'2+A'2
(15)

These equations were formally derived using the computer algebra tool MuPAD [9]. It is

important to note that r is undefined, i.e., denominator is zero, when the aircraft are parallel

and the ground speeds are equal.

For any time t, if r(t) is negative or zero, the tracks are diverging or parallel, respectively.

If r(t) is greater than zero, the tracks are converging and r(t) is the time of closest separation

relative to t. See Figure 4.

• Closest separation

tau
Time

Figure 4: Converging tracks

We have formally proven that r satisfies the following properties.



Lemma 1 (derivative_eq_zero_min).

.m_,+ T(t,)) _<R(t, + t_).

Lemma 2 (asymptotic_decrease_tau).

tl _<t2_<w(t) D R(t + tl) > R(t + t2).

Lemma 3 (asymptotic_increase_tau).

r(t) <_ tl < t2 D R(t + tl) < R(t + t2).

2.4 General Conditions for Conflict Avoidance

Ill this section, we present a set of sufficient conditions ibr conflict avoidance between intruder

and evader aircraft. The basic geometry of our approach is illustrated in Figure 5. Tile

initial position of the intruder is (:ri(0), yi(0)) and the position of" the evader at time T is

(:rE(T), ye(T)). We name the angle between tile path of the evader and tile line passing by

these two points as /3. The distance from (x,(0), y,(0)) to (xe(T),y_(T)) is named I. Label

d (tenotes the distance between tile initial evader position and the initial intruder position.

Given a t ilne t, 0 _< t < T, the expressions c(t) and i(t) denote the distance between the

intruder at time t and tiw evader at time T, and the distance between the intruder at time

0 and the intruder at time t, respectively. We also use r,p, and re(t) as abbreviations for

r(vi, MaxBank), p(t,i), and m(vi, MaxBank, t), respectively.

Formally, the distance from the position of the intruder aircraft at tilne ti to the position

of evader aircraft at time t_, denoted Die(ti, re), is defined as follows

Di_,(ti, t_) = V/(xi(ti) - :re(to)) 2 + (yi(ti)- y_(tc)) 2.

Therefore,

d =

(_(t) =

i(t) =

0o =

Di_(O,T)

D,,(O, o)

Di_(t,T)

v/(_,,(0)- :,:_(t))_+ (_(0)- _j_(t))_

0_(0)

and d is an angle such that

x_(T) = t(,os(_) + _:i(0) (16)

y_(T) = y,(0) -/sin(fl) (17)

Formally, we say that two aircraft are in a conflict at time t, when the following predicate
hohls

conflicti_(t) = Di_(t,t)<_ ConflictRange. (18)
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evader path

1

(xc(T)'yc(T)) _-" (xi(tl'yilt)),, _

VeT _ '"''\ [5 I 1

!,/t+a,+d-

_ Ixi(0l+y !0l)

I

(xc {0).y¢(0)) k....// d

" y

Figure 5: Basic Geometry

Note that -_conflicti_(T) is equivalent to e(T) > ConflictRange. Furtherinore,

conflictie(T) does not include conflicts at time less than T. However, since we assume a

continuous time, a conflict at time t < T can be analyzed by taken a new reference time

system, where time 0 is t - T. In the new time of reference, the conflict happens at tiIne T.

V_ now state a set of sufficient conditions to avoid conflict scenarios between intruder

and evader aircraft. All these conditions are suggested by the geometry of the problem. Con-

ditions (1) and (2) are consequences of the reachable area of an aircraft explained on Section

2.1. Condition (3) states that given some initial conditions, if intruder and evader aircraft

are heading to opposite directions, then a conflict scenario is impossible. Last condition,

characterizes non conflict scenarios when both aircraft are heading to the same direction.

Given T > 0, Vi, e. -_conflictie(T), when

1. no_conflict_gt_max:
l > MaxDistance,

where MaxDistance = viT + ConflictKange, or

2. no_conflict_lt_anin:

I <MinDistance A 0_< pT < 27r,

where MinDistance = re(T) - ConflictRange, or
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3. no_conflict_Omega:

l>ConflictRange+,vi A pT_<_-p A 0mega(/3+00),

where 0mega(a) = 7c/2 _< a _ 37r/2.

If vi = v,. = 250 feet/s, and AlertRange=1400 feet, as it is in the AILS concept, we also

have -_conflictic(T) when

4. ails _no_conflict_tau_le0:

MinDistance < l < MaxDistance A 9.5 < T < I0 A

_0mega(9+Oo) A d > AlertRange A r(0)_< 0.

Next section is devoted to the formal verification of the conflict avoidance properties.

3 Formal Verification of the Conflict Avoidance Frame-

work

The specification language of the PVS system is based on a higher-order logic extended

with a very rich type theory. This language gives us all the necessary power to express our

model of nominal trajectories in a simple way. For instance, trajectories are defined via the

PVS sub-typing mechanism in such a manner that the equations characterizing the motion

of an aircraft are just type-correctness conditions. Most of these conditions are discharged

automatically by the PVS type checker.

P\:S includes several decision procedures to cope with well-known decidable theories.

However, like most theorem provers, it has little automated supI)ort for non-linear arithmetic

and real analysis. \Ve have extended the pre-defined theory of real numbers and the theory

of differential flmctions developed in [3] with theories dealing with trigonometric and other
transcendental functions.

Non effective real functions are declared in PVS as uninterpreted constants of a given type.

Their behavior is then constrained via axioms. For example, cos and sin are functions from

reals to the real interval [-1... 1] satisfying, among other properties, sin(a) 2 + cos(b) 2 = 1.

In a similar way, v/7. is a function flom non negative reals to non negative reals such that

v_2 = a fbr a > 0. From this axioin, we can prove, for instance, that x/aT_2 = a for a > 0.

The remainder of this section is devoted to the proof" of the General Conditions tbr

Conflict Avoidance presented in Section 2. First, we discuss some technical details on the

fblmal proofs of inequalities and on integrating geometrical reasoning in a theorem prover

such as PVS. Then, we introduce a new systenl of coordinates. Finally, we detail the proofs
of the conditions in Section 2.4.

12



3.1 Dealing With Inequalities

Most of the properties that must be proven involve inequalities. First notice that as a

consequence of tile axionlatie definition of v/:., a t)roperty like 0 <_ a < v_, must be proven

by first, estal)lishing a 2 < b and then using a property of monotony over the squared flmction.

To deal with general inequalities, we assume the following calculus theorem

Theorem 3 (monotonic_anti_deriv).

Y.f,g' R-+R. Va, b" R. a < b D

(Vc'R. a< c < b D if(c) < g'(c))

D

f(b) - f(a) <_ g(b) - g(a).

In the verification process is sometimes inevitable to perform calculations on expressions

containing non effective functions such as the trigonometric functions. It. is tempting to use

approximation series to define, for instance, sin and cos. However, mixing approximation

series and axiomatic definitions of trigonometric functions may be source of paradoxes. Say

for example that sin and cos compute approximate values of the real ones. It will be very

unlike that, sin(a) 2 + cos(a) 2 evaluates to 1 for any value of a. In order to avoid that kind of

inconsistencies, we nfix approximations and uninterpreted functions in a very rigorous way.

Assume we want to t)rove that el[sin(a)] + _< e2[cos(b)] +, i.e., el contains a distinguished

positive occurrence of sin(a) and e2 contains a distinguished positive occurrence of cos(b).

Then, we find a computable upper bound of sin(a), say sin_b(a), and a computable lower

bound of cos(b), say coslb(b). Finally, we prove el[sin(a)] + < e_[cos(b)] + as follows

el[sin(a.)] + < e_[sin,b(a)]* (19)

e_[sin_b(a)] + < e2[coslb(b)] + (2(})

e2[cosMb)] + < e2[cos(b)] + (21)

Most of the times, Formulas 19 and 21 are simple to discharge. If el [sin(a),b] + and e.)[cos(b)tb] +

are computable then we prove Formula 20 by evaluating the expressions. Otherwise, we use

the same technique to remove other non computable values. Eventually, we will get two ex-

pressions that we can evaluate. This technique is so used and simple that we have developed

PVS strategies to automate the work.

Ill particular, we use the following definitions

---- _i----l( (2i-1)! i=1 (2i-1)!sinlb(a) 4 --1) i-' 0"'-_ sin_b(a) = y_5 (_l)i-l_-'

COS_b(a) = 1 +_i:l(--1) _! ( 1_i ,.2,

an(t the axioms 4

4In PVS, real numbers are written as rational numbers.
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Axiom 1 (PI).

Axiom 2 (SIN).

Axiom 3 (COS).

314/100 _ _ < 315/100.

0 _< a _< 7r D sintb(a) _< sin(a) < sin_b(a).

-_/2 < a <__/2 _ cos;b(a) < cos(a) < ¢:osuda).

3.2 New System of Coordinates

The first major step in our tbrmal development is to take as reference a new systeln of coor-

dinates where the origin is the position of the evader aircraft at time T, i.e., (x(.(T), ye(T)),

and ttle x-y plane has been rotate by 00 degrees. The new d'-.0 plane, which is illustrated in

Figure 6, is defined as follows

J:(t) = Cos(0D)[X(t) -- x_(T)] + sin(Oo)[y(t) - y_(T)]

:O(t) = cos(Oo)[y(t)- y_(T)]- sin(Oo)[x(t)- x_(T)]

(22)

(23)

XciT)

_(0)

i ^

X

: la'< ,_

_''"", ill: N_

: x'x'_x'_'x'x,x" '1

y
Yc(T) Yi(0)

Figure 6: New Coordinate System

We have formally proven that distances are invariant under rotation and translation of

the coordinate system. In particular, we have proven
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Lemma 4 (isometric).

(_ (t) - .T2(t))_+ (yl(t)- _2(t))2 = (_1(t) -:,=._(t))2+ (:_(t) - _]2(t))2

From lemma isometric, we call easily derive

Lemma 5 (isometric_evader).

e(t)2 = 2i(t) 2 + :Oi(t) 2.

Lemma 6 (isometric_intruder).

i(t) 2 = (.ii(t) - _i(0)) 2 + (:0_(t)- _)i(0)) 2.

As a corollary of lemma isometric_evader, we have

Lemma 7 (majoration).

_(t)_ > _,(t)_ A _(t)2 > ,O,(t)'_

3.3 Geometric Reasoning

Since conflict detection systems solve a physical problem, visualization plays an important

role in the verification process. \%_ have extensively used tools such as MuPAD [9] and GNU-

PLOT [19] to find geometrical relations between different components of the mathematical

framework before attempting a direct proof in the theorem prover.

In this section, we show proofs of two geometrical properties: hlpha_dAlertKange and

K_T. Lemma Alpha_dAlertRange exploits the Law of Cosines to bound the angle/3 and R_T

provides a formula for computing R(T) from l and tim angles !;t and 0. We recall that R(T)

is the projected distance between the evader and the intruder assuming that the intruder

continues in a straight line on his present course. Since geometrical reasoning is usually

easier to illustrate than to forinalize, we base our reasoning on Figure 7. However, the PVS

proofs are filled with details concerning the coordinate geometry version of the diagram.

Lemma 8 (Alpha_d_AlertRange).

Alpha(/]) _ d _<AlertRange,

where Alpha(a) -- eos(/_)> ((vT)2+ [2_ AlertRangee)/2vT{.

Proof. From the Law of Cosines,

eos(/4) = ((vT) _ + 12 - d2)/2vTl.

Therefore,

cos(f_)
((vT) 2 + 1'2 _ d'2)/2vrl

_d 2

d 2

d

> ((vT)'2 + [2 _ AlertRange2)/2vTl ¢==_

>_ ((vr) 2 + 12 _ AlertRange'_)/2vTl ¢==_

> -AlertRange 2 ¢=_

_< AlertRange 2 ¢=_

_< AlertRange.

[]
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Figure 7: R(T): Projected Distance at Time T

Lemma 9 (R_T).

R2(T) = (1 cos(3 + 0o) - (vT)) 2 + (/sin(;_ + 00)) 2.

Proof. At time T the evader will be at _(T) = (xe(T), yc(T)) and the projected location of

the intruder at time T is [(T) = (xi(T), yi(T)). Dropping a perpendicular line from g'(T) to

the intruder line defines point C. Ttw distance from 7(T) to C is 1sin(3 + 00). The distance

from [(0) = (xi(0),yi(0)) to C is / cos(/3 + 00). The distance from [(0) to [(T) is vT since

tilt, intruder is travelling at a constant rate of v. Thus, the distance from point [(T) to C

will I_¢, / cos(3 + 00) - vT. By the Pythagorean theorem, we haw':

R2(T) = (/cos(,:] + 0o) - (vT)) _ + (l sin(iT + 0o)) _.

[]

Finally, we address the proof of the sufficient conditions presented in Sectioil 2.4. Note

that soine proofs inay refer to technical lemmas included in the Appendix A.
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3.4 Theorem no_conflict_gt_max

We umst establish that tile distance ])etween the intruder and the evader at. time T is greater

than ConflictRange for all t)ossit)le trajectories of the intruder:

7"> 0 A l>MaxDistance

D

_conflictie (T).

Pro@ To establish -_conflictie(T), it sufficesto show e(T) > ConflictKange. From

Lemma YCNGFTYS_evader (see Apt)endix A), and instantiating t with T, we have

T>O A l>_v_T D 1-viT<_e(T).

The premise l >_ vi is discharged fi'om hypothesis I > NaxDistance and definition of

MaxDistance. To conclude the proof, we show that I -viT > ConflictRange as fi)llows

I - viT > MaxDistance - v_T By hypothesis 1 > NaxDistance

> ConflictRange + viT - viT By definition of MaxDistance

> ConflictRange Simt)lifying.

[]

3.5 Theorem no_conflict_le_min

This theorem states that all possible trajectories of the intruder stay outside of the conflict

region, if the initial distance from the evader, I, is less than MinDistance:

T _> 0 A I < MinDistance A 0 _< pT <_ 2

_conflictie(T).

Proof. To establish-_conflictie(T),we show that ConflictRange < e(T). From definition

of MinDistance and Equation 9,

ConflictRange = 2rsin(pT/2) - MinDistance. (24)

Since 1 < MinDistance, we have

ConflictRange < 2r sin(pT/2) - 1.

From the YCNGSTYS_evader lemma (see Appendix A), we have

1 <_ 2r sin(pr/2) A 0 <_ pr <_ 2 D 2r sin(pT/2) - l < e(T)

from which the desired result follows by transitivity. The premise of lemma YCNGSTYS_evader

is discharged by establishing

MinDistance _< 2r sin(pT/2)

via Equation 24, and applying the assumption that l < MinDistance. []
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3.6 Theorem no_conflict_Omega

T>_ (} A 1 >ConflictRange+vi A pT_< rr-p A 0mega(/3+00)

D

_conflicti_(T).

Proof. To establish_conflicti_.(T), we show c(T) > ConflictRange. We splitinto two

cases: 0<T<I and I<T.

1. Case 0 _< T < 1. From lemma YCNGFTYS_evader_ instantiating t with T, we have

1 >_ viT D l - viT <_ e(t) (25)

Since 1 > T, l -viZ > 1 - vi. But. 1 -v'i > ConflictRange > 0, then the prenfise

I > fiT of Formula 25 holds. Hence, e(t) >_ 1 - viT > l - vi > Conflictl_ange.

2. Case 1 _< T. By the majoration lemma (Lemma 7))"

c(r) 2 > :i_i(T) 2.

Appliying squared root to both sides results in

>

By the no_conflict_xp_l_Omega lemnm (see Appendix):

1 <T A pT<Tr--p A 0mega([3+#o) D 2/(T) >ConflictRange.

Transitivity yields the desired result.

[]

3.7 Theorem ails_no_conflict_tau_le0

t' = vi = ve = 250 A AlertRange = 1400 A 9.5 < T < 10 A

MinDistance < 1 < MaxDistance A -_0mega(_ + 00) A

d > AlertRange A r(O) _<0

D

_conflictie.

Pro@ This theorem follows immediately h'om Lemma Alpha_d_AlertRange (Lemma 8) and

the folh)wing three lemmas:
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• Lemma cos_no_conflict:

v=vi=ve=250 A AlertRange =1400 A 9.5< T< 10A

MinDistance < l < MaxDistance A

_Alpha(/]) A _0mega(;_+8o) A cos(8o+/3) _<(:os(/_)

D

_conflict_e(T).

• Lemma R_T_d_diff:

l>O D R(T)>_d

• Lemma tau_le_O_diverg:

<_o

cos(0o+ <

R(T) > d.

[]

Proof of lemma cos_no_conflict. \Ve establishe(T)2 > ConflictRange 2. From the isometric_evader

lemma (Lemma 5), substituting T for t, we have:

c(T) '2 = £_(T) 2 + :o_(T) 2.

From lemmas xpt and ypt (see Appendix A), instanfiating t with T, we get:

£i(T) > rsin(pT) -/cos(/_+ 0o)

y_(T) > /sin(/3 + 0o) + r(('os(pT) - 1).

We now st)lit on the two cases that come from the -,Omega premise:

1. Case 0 <_ i3 + 00 _< 7r/2. Lemma Math_propmo_conflict_l (see Appendix A)"

v=250 A 9.5<T< 10A

MinDistance < I < MaxDistance A

MinBeta _ a _<7r/2A

y >/sin(a) + r[cos(pT) - 1] A :r _> rsin(pT) -/cos(a)

D

:r'2+ y2 > ConflictRange 2,

where MinBeta = 539/1000, gives us the following after substituting 00 +/_ for a, g:i(T)

for x, and .Oi(Z) for y:

£i(r) 2 + .Oi(T) 'z > ConflictRange _.

\_% discharge the assumption:

MinBeta _< 00 +/_
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by using tile t)remise
cos(00 + 3) _<cosC3)

and Lmmna cos_beta_NOT_Alpha (see Appendix A):

v = 250 A 9.5 _< T _< 10 A AlertRange = 1400 A

ginDistance < l < MaxDistance A _Alpha(/4)

D

c()s(,t3) < cos(MinBeta).

Notice that cos is decreasing in the interval [0... rr].

2. This case is symmetric to tile t)revious one. VV_ use Lemma Math_propmo_conflict_2

(see Appendix A):

v=250 A 9.5<T< 10A

MinDistance < l < MaxDistance A

3_/2 _<a _<2_ - MinBeta A

y > l sin(a) + r(cos(pT) - 1) A x _> r sin(pT) - 1cos(a,)

D

x2 + y2 > ConflictRange 2,

and the fact that cos is increasing in the interval [37r/2... 2rr].

Proof of lemma R_T_d_diff. We must establish

1>0 D R(T) > d ¢=:v cos(0o+i3)_<cos(d).

FroIn leinma R_T (Lemma 9), we have

R(T) 2 = (1 eos(3 + 0o) - vT) 2 + (1 sin(,3 + 0o))'2.

Simplifying the right side we have

R(T) 2 = l '2cos(_ + 0o) '_ - 2vTlcos(/_ + Oo) + (vT) '2+ l"_sin(3 + 00) 2

= 1'2 - 2c, Tlcos(_ + 0o) + (vT) "2.

From Figure 7, we get

d 'e = (vZ) '2 + l 'e - 2vTI cos(/3).

Subtracting d 2 from R(T) 2 yields:

R(T) 2 -- d _ = 2vTl(cos(/_:¢) - cos(3 + 00)).

Since 2vTl > 0, we have

R(T) 2 - d'-' _> 0 ¢==> cos(f_) - cos(/] + 00) > 0.

The desired result follows from the fact that R(T) > d ¢==> R(T) '2 - d 2 >_ 0.

[]

[]
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Proof of lemma tau_le_O_diverg. To establish

T(0) < 0 _ R(T) >_a,

we begin with lemma asymptotic_increase_tau (Lemma 3):

_(t) _<tl _<t2 _ R(t + t_) _>R(t + tL).

Substituting T for t2 and 0 for t and tl, we have:

_(T) ___(0).

But by definition, R(O) = d, from which the desired result follows trivially. []

4 Verification of the AILS Alerting Algorithm

The AILS alerting algorithm determines when an alarm will be triggered bv generating pos-

sible collision trajectories for the aircraft involved in the parallel landing. 5 Distance and

times of minimum approaches for the generated trajectories are compared against distance

and time alert thresholds. Collision trajectories are calculated based on projection of air-

craft states, which consist of current position, heading, speed, and bank angle. Operational

requirements for the AILS concept state that both aircraft are in the same horizontal plane

and that the ground speeds of the aircraft are constant. We choose a conservative value of

v = 250 feet per second for the aircraft ground speed.

At the beginning of the algorithm, one aircraft is considered to be the intruder and the

other is considered to be the evader. The evader aircraft is assumed to fly on a straight

line following the center line of its runway, which is usually called localizer. The algorithm

is designed around the idea that the intruder aircraft is flying a circular path, based on a

constant turn rate, from which it can escape on a straight line following tangential tracks

separated 1.5 to 3 degrees. For all the possible trajectories, the algorithm computes time

and distance at the nfinimum separation. If they fall in time and distance alert thresholds,

then an alarm is issued. The algorithm runs on time-steps of ().5 seconds.

The original AILS algorithm was written in FORTRAN at Langley Research Center. It

has been revised several times and the latest version, flown in the Boeing 757 experimental

aircraft., was written by Honeywell. That algorithm provides several levels of alarms ranging

from advisory cautions to warnings according to the severity of the bhlndering of the intruder

aircraft. A traffic warning must be followed by an escape maneuver. For the work presented

in this paper, we use a higher level abstract model of the alerting algorithm, described in

[7], where only traffic warning alarms are considered. That model was written in PVS (see

Appendix C).

5In this section, we use indistinctly the words collision and conflict.
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4.1 Curved Trajectories

The h)gic of the AILS algorithm assumes that the evader aircraft stays oil the localizer during

the final approach. However, tile algorithm is designed to issue an alarm for any intruder

trajectory that threatens the evader aircraft. An original design target for the algorithm was

that an alarm should be issued at least 19 seconds before the potential collision. For a large

class of trajectories, which we will call curved, tile algorithm can be easily shown to meet

this goal. A curved trajectory is a trajectory where the aircraft follows a circular path (at

the current turn radius) until it exits the circle in a straight tangential track. Unfortunately,

curved trajectories do not provide the worst-case scenario. Indeed, in our more general

mo(h,l of trajectories, i.e., t)aths only constrained by tile dynamics of tile aircraft, we have

seen that two aircraft can approach to within 10.5 seconds of a collision without an alarm

being triggered by the AILS algorithm. That is, for lookahead times of 10.5 seconds or

greater, there exists trajectories leading to a potential collision for which an alarm will not

be issued. Using a simulation tool that we have implemented in Java [7], these trajectories

were first discovered. Later these trajectories were analyzed in PVS. In these trajectories the

intruder gradually approaches the evader at the beginning of tile final approach, but then

attacks tile evader in a very aggressive maneuver after approaching to within 1400 feet. The

situation is illustrated in Figure 8.

In the next section we will see that tbr lookahead times of 10 seconds or less the AILS

algorithm is coTv'ect, i.e., it will issue an alarm for any trajectory for which there is a potential
collision.

4.2 Correctness and Certainty

The AILS algorithm has been used as a case-study for formal safety assessment via the

framework proposed in Secti(m 2. In particular, ill this section, we address the formal

stateinent of correctness an<l certainty properties of tile AILS alerting algorithm.

Ill PVS, the algorithln is specified by the predicate

ails_alert(i, e) : State : bool

that takes tile initial states of an intruder aircraft i and an evader aircraft e, and returns

true or false depending on whether the alarm is issued or not. The two arguments i, e of

type State contain tile state variables that the algorithm operates oil. State is defined as

a record with fields x,y,heading,bank that represent the measured values of an aircraft's

position, heading, and bank angle. In this paper, we have assumed that these measurements

are made without error. Tile measurement process was formalized in PVS using a function

measure2state. The net result of a measurement without error is that if tr is a trajectory

consisting of flmctions x, 0.6, and 0, the following equalities hold6:

x(measure2state(tr, t)) = x(t) (26)

[_Access to records is written in PVS as function calls, i.e., if s is a State, x(s) refers to the field x of the
state .s'.
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Figure 8: AILS Worst-case Scenario for T=10.5 seconds
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y(measure2state(_r,t)) = ;q(t) (27)

heading(measure2state(tr, t)) = O(t) (28)

bank(measure2state(tr, _)) = 0(_). (29)

Although with ADS-B exchange of information the errors can be made very snlall, it should

be included. In future work will look at. incorporating measurement error into the analysis,

e.g.

x(measure2state(tr, t)) = x(t) +ex

y(measure2state(tr, t)) = y(t) + e.v

heading(measure2state(tr, t)) = O(t) + eo

bank(measure2state(tr, t)) = O(t) + ee.

where the e's are bounded according to the error inaccuracies of measurement devices.

The correctness property of the AILS algorithm states that if there exists an intruder tra-

jectory that brings the two aircraft within CollisionRange of each other, then the algorithm

will issue an alarm on the evader aircraft T seconds before of that potential collision. By

using the framework developed in Section 2, we have formally proven tile ails_correctness

theorem for 9.5 _< T _< 10. Therefore, each execution of the algorithm completely covers

all potential collisions in a lookahead time between 9.5 to 10 seconds. Since the time step

of the AILS concept, i.e., tile time gap between two consecutive executions of the alerting

algorithm, is 0.5 seconds, potential collisions at time less than 9.5 are covered by earlier ex-

ecutions of the algorithm. Due to operational constraints, when the AILS system is engaged

during a final approach, there is a safe window of at least 9.5 seconds when no collision can

Occur.

In the tblh)wing, and due to AILS operational requirements, we assmne v = vi = v_ = 250

and AlertRange = 1400. V_ also take ConflictRange equal to 200 feet, which is roughly

the wing span of a Boeing 747.

Theorem4 (ails_correctness).

Vi, c. 9.5 _< T < 10 A conflicti_(T)

D

ails_alert (measure2state (i,0),measure2state (e,0)).

Pro@ We split the proof in two cases, depending on whether d _< AlertRange or not (d

is the distance fronl intruder to evader at. time 0). The COlMusioil folh)ws immediately

from lemmas ails_alarm_at_alerting_distance and ails_alarm_when_collision, whose

proofs are detailed in Section 4.3.

1. ails_alarm_at_alerting_dist ante:

d < AlertRange D ails_alert(measure2state(i,(}) measure2state(e_,0)).
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2. ails_alarm_when_conflict:

d > AlertKange A 9.5 _< T < i0 A conflicti_.(T)

D

ails_alert (measure2st ate (i,0),measure2state (c,0)).

[]

Oil the other hand, tile AILS algorithm is uncertain for T _< 10 seconds, i.e., there exist

scenarios where an alarm is issued but there are no possible (:ollision trajectories within 10

seconds. In other words, false alarms may be issued.

Theorem 5 (ails_uncertainty).

3,si,.% "State. Vi,e. ,si= measure2state (i,())A ,% = measure2state (c,())

D

ails_alert(si, s>.)A _conflictie(T).

Proof. Take .s> and _i the states such that x(s_) = 0, y(.%) = 0, heading(Be) = 0, bank(,%) =

0, x(a'i) = 1400, y(.si) = 0, heading(si) = 0, and bank(si) = 0. We show:

1. ails_alert(si, s,.). It follows from lemma ails_alarm_at_alerting_distance and

eah:ulation of d _< hlertRange for the values of si and ,s_.

2. -_conflicti_(t). It follows from lemma no_conflict_gt-max and calculation of 1 >

MaxDistance for the values of si and .%.

A 0 < T < I0

[]

4.3 AILS Verification

This section is devoted to the formal proofs of lemmas ails_alarm_at_alerting_distance

and ails_alarm_when_conflict. The proof of the later lemma extensively uses the condi-

tions for conflict avoidance of Section 2.4. We refer to Appendix C for the PVS specification

of the AILS alerting algorithm.

Lemma 10 (ails_alarm_at_alerting_distance).

d <_ A_ertRange D ails_a_e_t(measure2state(i,O),measure2state(e,O)).

Proof. Expanding the definition of ails_alert (see Appendix C) yields:

IF p(bank(i)) = 0

THEN chktrack(i, e, 0)

ELSE arc_loop(...)

ENDIF

We split into two cases.
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1. Casep(bank(i))= 0. In this case, we nmst pi'ov(<

d <i AlertRange

But chktrack expands into:

IF 7-(i,e,0) _< 0

THEN chkrange(R(i, c,O), O)

ELSIF 7-(i,c, 0) > AlertTime

THEN R(i, e, AlertTime)

ELSE R(i,e,T(i,e,O)) <_

ENDIF

where AlertTime = 19 seconds. We split, into two cases.

(a) Case r(i, c, 0) < 0. In this case we must prove:

D chktrack(i, e, 0).

AlertRange

AlertRange

d < AlertRange D chkrange(R(i, c, 0), 0).

Expanding chkrange, we have

d < AlertRange D R(i, e, 0) _< AlertRange A 0 < AlertTime.

But R(i, e, 0) = d by definition so this is clearly true.

(b) Case 7(i, c, 0) > AlertTime. In this case we must prove:

d _< AlertRange D R(i, c, AlertTime) < AlertRange.

Using lenlma asymptotic_decrease_tau (lemma 2), we have

(} _< AlertWime < 7-(0) D R(i, c, O) >_ R(i, c, AlertWime).

Since R(i, t'.,O) = d, we have by transitivity the desired result.

(c) 0 < r(i, e, O) _< AlertTime. In this case we must prove:

d _< AlertRange D R(r(i,e, 0)) _< AlertRange.

From lemma derivative_eq_zero_min (lemma 2, this lemma characterizes the

property of 7- that R(7-(i, c, t)) is a minimum)"

roT-(<< o)) ___R(i, < o).

Once again since R(i, e, O) = d. we reach the needed result.

26



2. Casep(bank(i))# 0. Expanding ails_alert and arc_loop, and using tile fact that.

rood(O, m) = O, for m # O, we end up with tile goal

d <_ AlertKange D chktrack(i, e, 0),

which is identical to the result proved in the previous case. This means that only one

tangential projection is necessary to issue an alarm.

[]

Lemma II (alarm_when_conflict).

d > AlertRange A 9.5 < T _ 10 A conflicti,,(T )

D

ai_s_a_ert(measure2state(i,O),measure2state(c,O)).

Pro@ First, t)5' simple calculations we get

lOp < 2

10p < 7r-p.

(ao)
(31)

we use hypothesis conflicti_(T), to derive:

1 < NaxDistance, from Theorem no_conflict_gt_max (see Section 3.4),

2. l _ MinDistance,

mula 30,

from Theorem no_conflict_it_min (see Section 3.5) and For-

.

.

_0mega(/3 + 00), from Theorem no_conflict_0mega (see Section 3.6), Formula 31, and

l > ConflictKange (since l _> NinDistance), and

7-(0) > 0, from Theorem ails_no_conflict_tau_le0 (see Section 3.7), (1), (2), (3),

and hypothesis d > AlertRange.

Lemma ails_alarm_tau_gt0 (see Appendix C)"

MinDistance < l < MaxDistance A 9.5 _<T <_I0 A

_0mega(fl+0o) A 7-(0)> 0 A conflicti_(T)

D

ails_alert (measure2state (i,0),measure2st ate (c,0))

yields the result. []

The proofs of lemma alarm_at_alerting_distance and and lemma alarm_tau_gt0 only

use a small part of the potential capability of ails_alert. The chktrack function is called

recursively within ails_alert when the intruder's bank angle is not 0. The net effect is

that chktrack is executed against a sequence of tangents (about 1 to 3 seconds apart) from
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the projected curvedt)ath of the intruder. Interestingly, tile correctnessproperty (i.e., alarm
property) only dependsoil tile existenceof tile first chktrack execution. In other words,
the aiis_alert function could be reducedto a singlechktrack and tile theorem would still
hold. However,the presenceof theseother chktrack executionsenablesthe algorithm to
often issuean alarln earlier than the worst-casetime. We haveshownthat in the worst case,
evenwith theseextra chktrack executionspresent,there existsa trajectory wheretile alarm
is not issueduntil 10.5secondsprior to a potential conflict (Figure 8). Thus, the simplified
algorithm has exactly the sameworst-caseperforlnanceas ails_alert but may have an
inferior averageperformancer. However, this is oflget by" the fact that the simpler algorithm

is far less susceptible to false alarms. In this context, we say that a false alarm occurs

when tile algorithm issues an alarm and there are no feasible trajectories that carry the

intruder within the conflict region s. \_,_ have demonstrated that there are scenarios where

ails_alert will issue an alarm even though there are no feasible trajectories that lead to a

conflict. Thus, ails_alert does not satisfy the certainty property. \_,> have not vet explored

whether the simpler algorithm or a variation of it satisfies the certainty property.

5 Conclusion

In this paper, we have presented the foundation for a new approach to verifying the safety

of conflict detection algorithms that may one day be deployed in the national airspace. Such

algorithms are an enabling technology for free fight, where pilots are allowed to fly their

own preferred trajectories. The introduction of these algorithms in a free-flight context

raises significant saDty issues. Historically the trajectories of aircraft have been managed t)y

groun(l controllers through use of aircraft position data obtained from radar. The primary

rest)onsibility for maintaining aircraft separation has been borne by tile air traffic controller.

But under a free-flight approach, much of the responsibility for maintaining separation will

be transfered to the pilots and the software which provides them aircraft positions and warn-

ings of potential conflicts. We believe that current methods tbr gaining assurance about the

safety of ground-based decision-aid software are inadequate for many of the software systems

that will be deployed in the future in support of free flight. The current approach is based

on human-factors based experinmntation using high fidelity simulations. When the respon-

sibilitv for safety" resides in the human controller, this is clearly an appropriate approach.

The primary question to be answered is whether the software provides the controllers with

usefill information that aids them in their decision making. But as software takes on more

and more of the responsibility for generating aircraft trajectories and detecting potential

(,onfliets and perhaps even producing (and executing?) the evasive maneuvers, we will need

additional tools to guarantee safety. It is our view that the correctness of the algorithnl

must be estat)lished for all possible situations. Simulation and testing cannot accomplish

rHow one might formally capture the notion of average performance is an interesting question.
SNo algorithm can issue an alarm only when an actual conflict will occur, since doing so requires an

accurate prediction of the actual future path of the other aircraft.
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this. Although simulation and controlled experimentation are clearly necessary, they are

not sufficient to guarantee safety This can only be done by analytical means, i.e. formal

methods. \'_ should also note that it will also be necessary to demonstrate that tile imple-

mentation of these algorithms is correct. This refinement verification, in our view, must also

be accomplished using formal methods. We hope to explore this issue with our colleagues in

fllture work.

The trajectory model used in this paper is the final result after experimenting with

several other alternatives. Earlier work looked at discrete versions with the expectation that

this would lead to a more tractable verification task. Unfortunately the discretization of

the trajectories led to significant (and accumulating) modeling error that ted to erroneous

conclusions. In the end, we settled on modeling trajectories as differentiable functions over

real numbers. These trajectories are constrained by tile dynamics of an aircraft. These

constraints enable one to establish high-level properties that delineate when a conflict is

possible. In this paper we have developed a formal theory about trajectories that can serve

as the basis for tile formal analysis of conflict detection and resolution (CD&IR) algorithms.

Several limitations to this formal theory will be addressed in future work: (1) the theory

only deals with 2 aircraft,, (2) the vertical dimension is not modeled, and (3) aircraft data

measurement errors are not modeled.

Because the trajectories of the aircraft are modeled by differentiable functions over real

mlmbers and the discrete algorithms are periodically executed on a digital computer, the

problem domain falls into tile domain of hybrid models. The hybrid nature of the do-

main makes the verification problem especially difficult. Automatic: methods such as model

checking cannot directly handle the continuous trajectories, and discretization leads to unac-

ceptable errors. We are forced to reason about such systems in tile context of a fully general

theorem prover designed to handle a rich logic: such as higher-order logic, type theory, or

ZFC set theory. \_,_ have used SRI International's PVS theorem prover in our work and

found it to be sufficient to handle the problem but our work was often impeded by PVS's

baroque method for dealing with nonlinear arithmetic. Although PVS provides a splendid

suite of decision procedures that can automate nnlch of the tedium of theorem proving, in

this arena, they are not adequate. Simple properties of the reals must be manually extracted

from the PVS prelude, manually instantiated, and directly invoked during the proof. Also it

is often necessary to perform case splits to get a formula into a form that can be handled bv

the prover. Current work at SRI funded by NASA Langley is seeking to improve the PVS

capability for reasoning about formulas containing nonlinear arithmetic.

Future work will concentrate on applying this modeling framework to specific CD&R al-

gorithms and perhaps to self-spacing and merging algorithms designed to increase capacity

in the terminal area. We would also like to develop formal methods for analyzing conflict

resolution schemes and the safety of algorithmically-generated evasive maneuvers [8]. The

CD&R methods must be generalized to cover sets of aircraft, constrained by formally spec-

ified notions of aircraft density (static or dynainic). Finally, we would like to generalize

the methods to encompass measurement error and data errors. This is a necessary step to-

wards developing fbrmal methods useflfl for the design and implementation phases of realistic
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avionics.
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Appendix A: Technical Lemmas

Lemma 12 (Dxp).

_'(t) = ._,cos(0, - (_o).

Proof. We begin with the definition of :_:(the x-coordinate after rotating the axes t)y 00. See

Formula 22):

:_(t) = cos((?o)[xi(t) -- xe(T)] + siI'((_o)[yi(t) - ye(T)].

Differentiating we have:

A"(t) = cos(C)o)x{(t) + sin(Oo)y.i'(t).

From the aircraft dvnanfics (see f'ornnllas 1 and 2) we have xi'(t) = _(:os(0t) and y,'(t) =

_'sin(0t) which leads us to:

:i-'(t) = cos(Co ) v cos(Or ) + sin(Co )v sin(Or ).

Apt)lying the cosine of the difference of two angles trigonometri(: identity, we have

:_'(t) = _,cos(Or - 0o).

[]

Lemma 13 (Dyp).

.O'(t) = v sin(_)t - 00).

Proof. We begin with the definition of _) (the y-coordinate after rotating the axes by 0o. See

Formula 23):

_)(t) = - sin(O0)[x,(t) - f,_(T)] + cos(0o)[y_(t) - y¢(T)].

Differentiating we haw,:

:0'(t) - - sin(Oo) xi'(t) + cos(0o) yi'(t).

From the aircraft dynamics (see formulas 1 and 2) we have xi'(t) = v cos(0t) and yJ(t) =
v sin(_gt) which leads us to:

!)'(t) = - sin(Oo) v cos(Or) + eos(Oo) v sin(Or).

Applying the sine of the difference of two angles trigonometric identity, we have

:0'(t)= .,,sin(0, - 00).

[]
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Lemma 14 (YCNGFTYS_evader).

t>O

Proof. From Figure 5, we see that

A l>vt _ l-vt<_e(t).

1< ,,(t) + i(t).

From Theoreln YCNGFTYS(Theorem 1), and definition of i(t), we have

i(t) < yr.

Thus, 1 <_ e(t) + vt and hence

l-,,t <__(t).

Lemma 15 (YCNGSTYS_evader).

t > 0 A pt < 2 A 1 <_ 2rsin(pt/2) D 2rsin(pt/2)-l<_e(t).

Proof. Appyling the triangle inequality to Figure 5, we have

i(t) < 1 + e(t).

Rearranging

e(t) > i(t) - t.

From Theorem 2 and definition of i(t), we have i(t) >_ 2r sin(pt/2), which give ,Is:

e(t) >_ 2rsin(pt/2) - l.

Lemma 16 (theta_inv).

-pt <_ 0_ - 0o <_ pt.

Pro@ By Formula 4 we have

lO(t)l < MaxBank.

r' _.Monotonic increasing property of tangent function over interval [-7r/4, 7r/4] _mld,.

tan(-MaxBank) _< tan(O(t)) < tan(MaxBank).

Multiplying by g/v yields:

g tan(-MaxBank) g tan(O(t)) g tan(NaxBank)
< <
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Bv aircraft (tynamics(seeEquation 3), wehave:

g tan(-MaxBank)
< 0t' _<

g tan(MaxBank)

7_ 7_

But, t an(-MaxBank) = - t an(MaxBank) and by definition p = g tan(MaxBank)/v, giving us
our desired result:

-p < Of _< p.

Integrating frOIll 0 to t yields (Theorem 3):

-pt <_ Ot - Oo <_ pt.

Lemma 17 (DxpO_PI).

O<_t A pt<Tr

Proof. From lemma theta_inv we have:

D if(t) _> vcos(pt).

-pt <_Ot-Oo < pt.

We consider two cases.

1. Case 01 -0o > 0.

have

cos(0_- 0o) > cos(pt).

FI'oIn lemma Dxp, we know :i"(t) = v cos(Or - 00), we conchide

:_-'(t)= _,cos(O, - Oo)> ,_,co@t).

2. Case 0t - 00 < 0. From lemma theta_inv we have:

Ot - Oo > -pt.

Since the cos fimction is monotonically increasing over [-_-, 0], we have

cos(0, - 00) _> cos(-pt).

Since cos(-pt) = cos(pt), we conclude

.i:'(t) = ,,cos(O,- Oo)>_,,c,,s(pt).

[]

Since the cos fllilction is monotonically decreasing over [0, lr], we

[]
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Lemma 18 (xpt).

o _<t A pt _<n > _:(t) - J-(o) > h_(t),

where h_(t) = r sin(pt).

Proof. From lemma Dxp0_PI we have:

0 <_t Apt <_7r _ 2'(t) >_,_,cos(pt).

By differentiation:

d [v
J/(t) __ _ p sin(pt)].

Integrating both sides:

fo t _'_ d .'v:f:'(t)dt >_ . _[pSin(pt)]dt.

This yields

v sin(pt)l,o.
P

Simplifying and using definition of r (r = v/p), we conclude

_:(t)- :_:(0) _ vsin(pt) = k:,,(t).

[]

Lemma 19 (Dyp0_PI2).

0 <_ t A pt _< 7r/2 D -v sin(pt) < :0'(t) _< v sin(pt).

Proof. From lemma theta_inv we have:

-pt < Ot -Oo < pt.

Since [pt[ < 7:/2 and lot - 00[ < 7:/2 and sin is monotonically increasing over this region, we
have

- sin(pt) < sin(Or - 00) < sin(pt).

Multiplying through by v and using lemma Dyp: _)'(t) = v sin(Or- 00), yields:

-v sin(pt) _< _)'(t) _< v sin(pt).

h_(t) - h,(o) < _(t) - _(o) ___h,(o) - h,(t),

[]

Lemma 20 (ypt).

O<_t A pt<Tc/2

where h,(t) = r cos(pt).
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PTvof. From lemma DypO_PI2, we get:

-v sin(pt) _< _O'(t) <_ v sin(pt).

By definition hu(t) = ,'cos(pt), so hi(t) = -r psin(pt) = -v sin(pt), so we obtain

h/(t) _<.¢(t) _<-h,/(t).

Integrating yields (see Theorem 3):

/0 /0' /0'h/(t)dt <_ [/(t)dt < -h/(t)dt

and evaluating gives us:

h,,(t) - h_(O) <_ y(t)- g(O) <_ h_(O) - h.,,(t).

Lemma 21 (cos_beta_NOT_Alpha).

v = 250 A 9.5 _<T _< I0 A AlertRange = 1400 A

-TAlpha(3) A MinDistance _<l A l _<MaxDistance

D

cos(3) < cos(MinBeta).

Proof. We begin by restating the formula using _,4 A B ) C _ -_C A B

a tautology:

cos(H) > cos(MinBeta) A MinDistance _<I A I _<MaxDistance A

t, = 250 A 9.5 _< T _< 10 A AlertRange = 1400

D

tlpha(_).

\_ must establish Alpha(3), which is defined as below:

I cos(3) >

Clearh" it, suffices to show that

(v T) 2 + 12 -- AlertRange 2

2To

l eos(MinBeta) >

Multiplying both sides by 2TP yMds

(v T) 2 + 12 - AlertRange 2

2T'u

2Tvl {'os(MinBeta) > (v T) 2 + 1_ -- AlertKange 2,

which is true for 9.5 <_ T _< 10, v := 250, and AlertRange = 1400.

D
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Lemma 22 (Alpha_d_alertRange).

Alpha(/]) _==>

Proof. By definition of Alpha, we have:

(vT) 2 - 1'__ AlertRange 2

I cos(/_) _> 2vT

Simpli_qng the left-hand side, we have:

d _< AlertRange.

_===> d _ AlertRange.

AlertRange'-' >_ (vT) 2 - 12 - 2vTl cos(f) _> ¢==> d < AlertRange.

Now using the Law of Cosines (see Figure 7), we get. d 2 = (vT) 2 - 12 - 2,,rl eos(j_), and

substituting, we have

d 2 _< AlertRange 2 >_¢==> d _< AlertRange

which is trivially true because d and AlertRange are distances and hence non-negative. []

Lemma 23 (xp0).

:_(0) = -1 cos(00 + f_).

Proof. We begin with the definition of :_"(the x-coordinate after rotating the axes by 00. See

Fornmla 22):

J:(t) = (:os(Oo)[J'i(t) - xe(Z)] q- sin(00)[.qi(t) - ye(r)].

From formulas 16 and 17, we have x_(T) = /cos(13) + xi(O) and .v_(T) = yi(0) -/sin(/3).

Substituting we have:

._(o)= cos(0o)[-lcos(3)] + sin(0(,)[lsin('3)]

= -1 [cos(0o) cos (f_) - sin (0o) sin ([_)]

= -I cos(00 +/_).

The last step following from the trigonmetric identity for the cosine of the sum of two

angles. []

Lemma 24 (no_conflict_xp_l_0mega).

l_<t A p__<Tr-p A 0mega(3+00) D _(t) >ConflictRange.

Proof. We begin with Lemma xpt:

o _<t A p_ _ ,_ _ _:(t) - _(o) >/,_(t).

By definition h_(t) = r sin(pt), so we have

:/'(t) -:i'(0) >_ r sin(pt)
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dropping the prenfises.From the Lemma xp0:

= -I cos(00 +

Under the Omega assumption, cos(00 +/_) < 0, therefore J:(0) is non-negative, giving us

3"(t) > r sin(pt).

Then since t > 1, we have pt > p, and since pt _< 7r/2, we haw_ sin(pt) _> sin(p). This leads
to

i'(t) >_ r sin(p).

From the following increasing_r_sin_rho axiom:

r sin(p) > ConflictRange

(which has been checked in MuPAD whenever v > 210), we have tim desired result. []

Lemma 25 (alarm_NOT_0mega_T).

MinDistance < l < MaxDistance A

_Omega(/7 + 0o) A conflicti_(T)

D R,(T) < AlertKange.

Pro@ We begin with Lemma R_T, which gives us:

R_(T) = [/cos(iT + 00) - vT] 2 + [/sin(/i + 00)] 2 (32)

From Lemma conflict_beta_theta, we have

MinDistance < 1 < MaxDistance A

_0mega(/] + 0o) A conflicti_(T)

O ((/3+ 0o _<MinBeta) V (i]+ 00 > 2_ - MinBeta)).

This gives us two cases to consider:

1. Case ;3 + 00 _< MinBeta. From Lemma Hath_prop_alarm_l, after substituting i_ + 00
for a, we have

MinDistance <l <MaxDistance A 0_<,3+0o A 3+0o_<MinBeta

D [lcos(/]+ 0o) -'t,'T]2 + [/sin(/3+ 0o)]2 _<AlertRange 2.

Using this and Equation 32, we have 9

2 TR, ( ) _< Alertl_ange _

from which the, desired resull R, (T) _< AlertRange immediately follows since AlertKange

is positive.

:_The angle 3 is defined such that 0 <_/9 + 0o < 27r.
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2. Case_]+ 0o > 27v - MinBeta. From LeInma Math_prop_alarm_2, after substituting

fl + Oo fi)r a, we have

MinDistance < 1 < MaxDistance A

27r--MinBeta_< /_+0o A !_+8o _<2_

D [/cos(i_ + 00 - vT] 2 + [/sin(/] + 00)] 2 _< AlertRange u.

Using this and Equation 32, we have

2 zR,( ) <_ AlertRange 2

fronl which tile desired result R, (T) _< Alertgange immediately follows since AlertRange

is positive.

[]

Lemma 26 (alarm_NOT_0mega_tau).

MinDistance < 1 < MaxDistance A

_0mega(0o + fl) A

conflictie(T) A T(0)> 0

D R,(T(0)) _<AlertRange.

Proof. This proof follows easily from the analysis of two cases:

1. Case R,(T) <_ AlertRange. IfT _< r(0), then from Lemma asymptotic_decrease_tau

we have R,(r(0)) < R,(T) which gives us tile desired result immediately by transitivity.

Otherwise (i.e., T > r(0)), we use Lemma asymptotic_increase_tau which gives us

R, (7-(0)) _< R, (T) from which the desired result immediately follows by transitivity.

2. Case R,(T) > AlertRange. From Lemma alarm_NOT_0mega_T:

MinDistance < l < MaxDistance A

_0mega(fl + Oo) A conflictie(T)

D R,(T) < AlertRange

from which tile desired result iInmediately follows by transitivity.

Lemma 27 (alarm_NOT_0mega_AlertTime).

MinDistance < I < MaxDistance A

_0mega(fl+ 0o) A conflicti_(T) A

r(O) > AlertTime

D R,(AlertTime) _<AlertRange.

[]
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Proof. From Lemma alarm_NOT_0mega_T, we have

MinDistance < / < MaxDistance A

_0mega(/_ + O0) A conflicti_(T)

D R,(T) <_AlertRange

and from Lenuna asymptotic_decrease_tam we have R, (AlertTime) < R, (T). Combining

these two results gives us the desired result: immediately by transitivity. []

Lemma 28 (conflict_beta_theta).

MinDistance < I < MaxDistance A

_0mega(3 + 0o) A conflictie(T)

D ((_]+ 0o _<SinBeta) V (J + 0o > 2w - SinBeta)).

Proo[. From the definition of conflictie, we have

g(:ri(T) - :re(T))2 + (yi(T)- .qe(T))2 <_ConflictRange.

Squaring both sides:

(.ri(T)- :r_(T))2 + (gi(T)- y_(T))2 <_ConflictRange 2.

From Lemma isometric_evader, we have

e(T) "2= :ii(T) 2 + "Oi(T) 2.

By definition of e(T), we have:

(:ri(T)- ,_(T)) 2 + (y,(T)- g_(T)) 2 = :ii(T) 2 + :Oi(T) 2.

Bv substitution, we obtain:

:ii(T)2 + yi(T) 2 < ConflictRange.

From Lemma xpt_Pl, we obtain

O<_T A pT<_r

D S'(T) > r sin(pZ) - 1 cos(d + 00)

and from Lemma yp_PI2, we obtain

O<T A pT<_Tr/2 D

:O(T) >/sin(/3 4-00)+ r (cos(pT)- 1) A

fl(T) < l sin(3 + 0o)- r (cos(pT)- 1).
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Direct calculation provides pT < _r/2 which discharges the premises of these two lemmas.

Then from Lemma Math_prop_no_conflict_l (substituting 3 + 0o for (_, J:(T) for x, and

)(T) for y), we get

MinDistance < l< MaxDistance A

MinBeta<_ i_+0o A /3+0o <__r/2 A

:O(T) >_ lsin(/:i+Oo)+ r (cos(pT)- 1) A

:?(T) > r sin(pT) - I cos(/3 + 00)

D :_'2(T) + .02(T) > ConflictRange 2.

From Lemma Math_prop_no_conflict_2 (substituting3 + 00 for (i,J:(T)for x, and y(T) for

y), we get

MinDistance < l< MaxDistance A

3_/2_</_+0o A 3+0o-<2_-MinBeta A

y(T) < 1sin(_ + 00) - r (cos(pT) - 1) A

_'(T) > -1 cos(3 + 00) + r sin(pT)

D :_2(T) + O2(T) > ConflictRange 2.

Discharging the premises of these lemmas from the main premises and derived results we

obtain:

MinBeta< fl+0o A ./_+0o_< 7r/2 A

D J:2(r) + :02(T) > ConflictRange 2

and

37r/2 _< A + 0o A 3 + 0o _< 27r - MinBeta A

D 37')(T) + y2(T) > ConflictRange 2.

The contrapositive of these are:

J?')(r) + _)2(T) _< ConflictRange ')

D MinBeta > l_ + 0o V ;_ + 00 > 7r/2

and

:_2(T) + 'y2(T) _< ConflictRange 2

D 37r/2 > i3 + 0o V 3 + 0o > 27r - MinBeta.

Combining these results we end up with

(MinBeta > /3 + 0o V 3 + 0o > _r/2) A

(3zr/2 > 3 + 0o V 3 + 0o > 2_r -- MinBeta).
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But by definition of the I)remise_Omegawehave:

/3 + 0o < 77/2 V 3 + 0o > 3rr/2.

Combining these last two results yields

M±nBeta > _ + 0o V L4+ 0o > 2rr - MinBeta

tim desired result.

Lemma 29 (xpt_PI).

O<t A pt<_Tc D

Pro@ From Lemma xpt, we have

o < t A pt _<77 _ ;-(t) - _,(o) > h_(t).

From Lamina xp0, we have

:_(0)= -t _.os(Oo+ ,'3).

By definition, h. = rsin(pt), so we have

the desired result.

Lemma 30 (ypd_I2).

2(t) _> r sin(pt) - 1cos(z//+ 0o).

2(t) > r sin(pt) - / cos(0o + 3)

O<T A pT<7c/2 D

.0(T) _> I sin(,3 + 0o) + r (cos(pT) - 1) A

;O(T) <_/sin(3 + 00) - r (cos(pT) - 1).

Proof. From Lemma ypt, we have

O<_t A pt <_rc/2 D

{l(t) - fi(O) >_ hv(t) -- by(0) A

:O(t)- _(o) _<h,(o) - h_(t).

Froln Lemnla ypO, we have

By definition of h u

which siml)lifies to

*)(0) = l sin(0o + 3).

= r cos(pt) and substituting for !)(0), we have

,)(t) - t sii_(0o+ J) _>,-cosOt) - _cos(0) /_

_(t) - / sin(0o + ;_)< r cos(0) - r cos(at)

O(t) - / sin(0o +/4) >_ 'r (c()s(pt) - 1) A

9(t) - I sin(0o+ ;_) < r (1 - cos(pt))

from which the desired result immediately follows.
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Lemma 31 (yp0).

:0(0)= / sin(00 + 3).

Proof. \Ve begin with the definition of :0 (the y-coordinate after rotating tile axes by 00.

Formula 23, after substituting 0 for y, becomes

:0(0) = cos(00)[y_(0) - y¢(T)] - sin(Oo)[x_(O) - x¢(T)].

From formulas 16 and 17, we have x¢(T) = /cos(3)+ xi(0) and p_(T) = y_(0)- lsin(/_:).

Substituting we have:

J:(O) = cos(Oo)[/sin(/_)] - sin(Oo)[l cos(/_)]

= /[cos(Oo)sin(/_) - sin(Oo)cos(3)]

= Isin(00 + 3).

The last step following from the trigoninetric identity for the sine of the sum of two angles.
[]

Lemma 32 (ails_alarm_tau_gtO).

MinDistance < l < MaxDistance A

_Omega(L_ + 0o) A

r(0) > 0 A
conflicti_(T)

D

all s_alert (measure2state (i, 0), measure2state (c, 0)).

Pro@ \Ve split into two cases.

1. Case p(bank(i) ) = 0. In this case ails_alert simplifies to chktrack(i, e, 0). Expand-

ing chktrack we have,

IF w(0) > AlertTime

THEN R,(AlertTime) _ AlertRange

ELSE R,(T(0)) < AlertKange

ENDIF

where R,(t) is an abbreviation for R(measure2state(i, 0),measure2state(_, 0), t),

which is the R function (i.e., Equation 14) evaluated on the measured state variables

at. time t.

(a) Case r(0) > AlertTime. \%%'need to establish that

R,(AlertTime) < AlertKange.
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From Lemmaasymptotic_decrease_tam wehave:

R, (T) > R, (AlertTime).

From Lemma alarm_NOT_0mega_T we have :

MinDistance < I< MaxDistance A

_Omega(3 + _o) A conflicti_(T)

D R,(T) <_AlertRange

and we imnmdiately get tlle desired result by transitivity.

(b) Case r(O) _< AlertTime. We need to estat)lish that

R,(r(O)) _< hlertRange.

From Lemma alarm_NOT_0mega_tam we haw'_

MinDistance < 1 < MaxDistance A

_0mega(00 +/_) A

conflictie(T) A w(O) > 0

R,(T(0)) _<AlertRange

which discharges this case.

. Case p(bank(i))# 0. Expanding ails_alert and arc_loop, and using the fact that

rood(0, m) = 0, for m # 0, we end up with an identical goal to the result proved in the

previous case. This means that only one tangential projection is necessary to issue an
alarm.

[]

The following lemmas are more general than the other leInmas in the appendix in that

they only invoh,e standard mathematical functions and not the specific functions of the

collision avoidance framework m. It is noteworthy that they were discovered with the aid of a

l)lotting tool (GNUPLOT) and a computer algebra program named MuPAD. At first these

were introduced into the PVS theories as axioms. After all of the main theorems of this

paper were completed, proofs of these lemmas were constructed in PVS. Whether this last

step is necessary is a philosophical one. Nevertheless, this two step process was essential to

the discovery of several of the proofs in this paper.

l°Although the lemmas reference terms such as MinDistance and ConflictRange, these are just constants
that can be replaced by their values.
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Lemma 33 (Math_prop_no_conflict_l).

v=250 A 9.5<T< 10A

MinDistance < I < MaxDistance A

MinBeta _<a _<_/2 A

y >/sin(a) + r[cos(aT)- 13 A x > ,-sin(aT)-/cos(a)

D

x2 + y2 > ConflictRange 2,

where MinBeta = 539/1000.

Proof The key to proving this t heorenl was finding tile mininnun of

r sin(aT) -/cos(MinBeta)] 2 + [r (cos(aT) - 1) + / sin(MinBeta)] 2

and splitting tile proof into the two cases for each side of this minimum.

occurred around L = 2442 as illustrated in Figure 9.
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Figure 9: Plot of formula 33 as a function of I.

1. Case l < L.

MinBeta <_a, we have:

/sin(a) + r[cos(pT) - 1] >_ / sin(MinBeta) + r[cos(pT) - 1].

Applying transitivity to this formula and the Y premise of the theorem, we have

y _> /sin(MinBeta)+ r[eos(pT) - 1].

Squaring both sides:

Because sin is monotonically increasing over the the range [0, 7r/2] and

y2 > [r (cos(aT) - 1)+/sin(MinBeta)] 2. (34)
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Because cos is monotonically decreasing over tile range [0, 7v/2] and MinBeta __ a, we
have:

_"sin(pT) - I cos(a) > r sin(pT) - 1cos(MinBeta).

Applying transitivity to this formula and the x premise of the theowm, we have

x >_ r sin(pT) - l cos(MinBeta).

Squaring both sides:

x e :> [r sin(pT) - / cos(MinBeta)] '_. (35)

Combining formulas 35 and 34 yields

x 2 + y2 _> [rsin(pT) -/cos(MinBeta)] 2 + [r (cos(pT) - 1) +/sin(MinBeta)] 2.

Expanding the squares:

•r 2 + !/2 > r 2 sin2(pT) + 1_ cos2(MinBeta) - 2It sin(pT)cos(ginBeta)

+r 2 (cos(pT) - 1) ') + 12sin2(MinBeta)

+2/r (cos(pT) - 1) sin(MinBeta).

Using sin_(o_) + cos2(cQ = 1, we have

x2 + y2 _> r 2 sin_(pT) + 12 _ 21r sin(pT)cos(MinBeta)

+r 2 (cos(pT)- 1) _ + 2lr[cos(pT)- 1] sin(MinBeta).

Further expansion and simt)lification yields:

:r2 + !/2 _> 12 - 21r sin(pT) cos(M±nBeta)

+r2[sin2(pT) + cos2(pT)- 2 cos(pT) + 1] + 21r [cos(pT)- 1] sin(MinBeta).

Using sin2((_ ,) + cos2(_) = 1 again, we have

x2 + y2 > 12 _ 21r sin(pT) cos(MinBeta)

+2r211 - (:os(pT)] + 21r [cos(pT) - 1] sin(M±nBeta).

Rearranging terms and simpliL'ing:

x 2+y'_ _> 1'_+2r2[1-cos(pT)]

+21r[(cos(pT) - 1) sin(MinBeta) - sin(pT) cos(MinBeta)]].

Further manit)ulation yields:

:r2 +-'V 2 > 12 + 2r2[1 -(:os(pT)]- 2/rsin(MinBeta)

+21r[cos(pT) sin(MinBeta) - sin(pT) cos(MinBeta)]].
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Using tile differenceof two anglestrigonmetric identity for sin yields:

,_12 __ _12 _ 12 __ 27.211 _ cos(pT)] - 21r sin(MinBeta)

+21r sin(MinBeta - pT).

Using sin(-o:) = -sin(o), we have:

x 2 + p 2 _> 12 + 2,211 -cos(pT)]- 21rsin(MinBeta)

-2/r sin(pT - MinBeta).

Rearranging terms and simplifying:

z2 + y2 _> 12 + 2r 2 - 2r 2 cos(pT) - 21r sin(MinBeta)

-21r sin(pT - MinBeta).

Now, axiom Ax2, which has been checked in MuPAD, yields:

v =250 A 9.5 < T< 10A

MinDistance < l < L D 12 + 2 r 2 - ConflictRange 2 - 2r 2 cos(pT)

-21r sin(MinBeta) - 2h" sin(pT - MinBeta) > 0.

Rearranging terms of this axiom gives us:

12 + 2 r 2 - 2r 2 cos(pT) - 2lr sin(MinBeta) - 2/r sin(pT - MinBeta) > ConflictRange 2.

Transitivity yields

z2 + y2 > ConflictRange 2

the desired result.

2. Case 1 > L. Using the techniques described in Section 3, the lemma

Math_pr op_no_conf 1 ±ct_y_L_P 12:

v=250 A 9.5<T< 10A

L < I < MaxDistance A

MinBeta _<a _<7r/2A

y >/sin(a) + r[cos(pT) - 1]

D

y > ConflictRange

The premises of this lemma follow from the premises of theis easily established.

theorem, so we have

Squaring both sides yields

y > ConflictRange.

;q2> ConflictRange 2.

From which the desired result:

:r2 + p 2 > ConflictRange 2

immediately follows.
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Lemma 34 (Math_prop_no_conflict_2).

v=250 A 9.5<T< 10A

MinDistance < l < MaxDistance A

3_/2 _<a _<2_ - MinBeta A

y _>/sin(a) + r(cos(pT) - 1) A x _> r sin(pT) -/cos(a)

D

x2 + y2 > ConflictRange 2.

Proo.[. Using lemma Math_prop_no_conflict_l, substituting 2_r-a for a and -y tbr y yields:

v=250 A 9.5<T< 10A

MinDistance < 1 < MaxDistance A

MinBeta < 2_ - a < _/2 A

-y _>Isin(2 - +  [cosOT)- i]A
:r > r sin(pT) - / cos(2_ - a)

D

:r2 -4- (_y)2 > ConflictRange 2.

Since (_y)2 = y2 sin(2,7 - o) = --sin(a) and cos(27r - a) = cos(c_), we have

v=250 A 9.5<T< 10A

MinDistance < l< MaxDistance A

MinBeta _<2_ - a < _/2 A

-y > -1 sin(a) + r[cos(pT) - 1] A

:r _> r sin(pT) - 1cos(a)

D

z_ + y2 > ConflictRange 2.

Multiplying both sides of the g premise by -1 and writing MinBeta _< 27r - a _< 7r/2 as
3_r/2 _< a _< 27: - MinBeta yield the desired result. []

Lemma 35 (Math_prop_alarm_l).

MinDistance < l< MaxDistance A

0 < a A a <MinBeta

D [/cos(a)- vT] _ + I/sin(a)] 2 < AlertKange 2.

Pro@ Using algebraic manipulation we get

[l cos(t_) -vZ] 2 -I- [1sin(a)] 2 = v2Z 2 + 12 - 2vTl cos(a).

Using the techniques described in Section 3, we get

v2T 2 + F - 2vTlcos(a) <_ v'2T 'z + 1'2 - 2vTlcos(MinBeta).
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Finally, wehavecheckedin MuPAD, and assumedit as an axiom iIl PVS (Axiom Ax3), that

_,'eT2+ 12 -- 2vTl cos(MinBeta) _<AlertRange 2

under tile given hypothesis. Transitivity yields tile result. []

Lemma 36 (Math_prop_alarm_2).

MinDistance < 1 < MaxDistance A 2rr - MinBeta _< a A a _< 2rr

D [/cos(a) - vT] 2 + [/sin(a)] 2 < AlertRange 2.

Proof. Using lemma Math_prop_alam_l, substituting 2rr - a for a yields:

MinDistance < I< MaxDistance A

0< 2_-a A 2_--a < MinBeta

D [l cos(2rc - a,) -vT] 2 + [l sin(2rc - a)] 2 _< AlertRange 2.

We conch, de using the equalities cos(2rc-a) = cos(a), sin (2rr-o) = - sin (a), and [-I sill(O)]2 =

[1sin(o)] 2. []
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Appendix B: Table of Translations

Paper PVS

i intr

e evad

Ot theta(t)

_o theta(O)

p rho (v)

O
R(t)

beta

Xe

_(t)
_(t)
J.'(t)

phi

R(intruder,evader,t)

r(t) tau(intruder,evader,t)

x(intruder)

y'(t)

x (evader)

xp(t)

yp(t)

D (xp (t))

D(yp(t))

x* xtrk

y* ytrk

SiIl/b sin_lb

COSlb cos_lb

sin,_b S in_ub

COSub COS_UD

r,,b r_ub (V)

Pub rho_ub (V)

rib r_lb (V)

Plb rho_ib (V)

Di_(t_, re) Die (ti ,te)
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Appendix C: AILS Alerting Algorithm in PVS

ails : THEORY

BEGIN

Bank: TYPE = {1": real I -MaxBank _< /'< MaxBank}

State: TYPE = [# X: real, 5" real, heading: real, bank" Bank #]

i, c: VAR State

range, t: VAR real

0: VAR Bank

r, p: VAR real

k: VAR [0... MaxStep]

idtrk" VAR posnat

p(O)" real = ,qtan(O)/v

chkrange(range, t): bool = range _< AlertRange A t _< AlertTime

chktrack(i, c, t): bool =

LET r = r(i, e, O) IN

IF w < 0

THEN chkrange(R(i, e, 0), t)

ELSIF t q- 7- > AlertTime

THEN R(i, c, AlertTime) _< AlertRange

ELSE R(i, e, r) <_ AlertRange

ENDIF

arcloot)(i, c, r, p, idtrk, k): RECURSIVE bool =

IF k = MaxSt.ep

THEN FALSE
1

ELSE LET t ---- k_ IN

LET X1OC ---- X(e)-4-l't IN

LET yloc = y(e) IN

LET (X*, y*)

= IF p > 0
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THEN (x(i) -[- 7" (sin(heading(i) + pt) - sin(heading(i))),

y(i) + r (cos(heading(i))- cos(heading(i)+ pt)))

ELSE (x(i) + r (sin(heading(i)) - sin(heading(i)) + pt),

y(i) + r (cos(heading(i) + pt) - cos(heading(i))))

ENDIF

IN

IF -7 rood(k, idtrk) = 0

THEN LET range = V/(x * - xloc) 2 + (g* - yloc 2) In

IF chkrange(range, t)

THEN TRUE

ELSE arc_loop(i, e, r, p, idtrk, k+ 1)

ENDIF

ELSE LET tantrk = heading(i)+ t p IN

LET int = i WITH Ix := x*, y := y*, heading := tantrk] IN

LET Pva = t' WITH Ix := xloc, y :---- yloc] IN

IF chktrack(int, eva, t)

THEN TRUE

ELSE arc_loop(i, e, r, p, idtrk, k + 1)

ENDIF

ENDIF

ENDIF

MEASURE (MaxStep- k)

ails_alert(!, e)" bool =

LET 0 ---- bank(i) IN

LET p ---- [(O) IN

IF p= 0

THEN chktrack(i, c, 0)

ELSE LET r = 'l,,2/(.qtall(O))IN

LET idtrk

= IFp> 3

THEN l

ELSIF p _> 1+1/2
THEN 2

ELSE IF P > 3/4 THEN 4 ELSE 8 ENDIF

ENDIF

IN arc_loop(i, e, r, p, idtrk, 0)

ENDIF

END ails
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